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ABSTRACT

A study of noise induced synchronization phenomena in neural firing activity of coupled

Class-I spiking neurons is presented . The model studied is that of a system of generic oscil-

lators supporting saddle node bifurcation on an invariant circle called theta neuron coupled

together.Coupling realized through a gating variable and a set of parameters describing its

coupling strength and synapse type. The gating variables are governed by feedback equations

which depend upon the output of the neurons they couple. We study both bidirectional and

unidirectional coupling configurations with different combinations of synapses.

Using various techniques of nonlinear dynamics such as nonlinear time series analysis,

methods of bifurcation theory and calculation of lyapunov exponents, we study the rich

dynamical structure of the emergent collective behaviour of the coupled neuronal system. We

observe that introducing common white noise to this system induces synchronous activity in

it. We have made use of Hilbert transforms and statistical interpretation of phase differences

in the presence of noise to show phase synchronization in some of the cases where complete

synchronization was found to be elusive. We find that noise can increase the rate of firing.

We calculate Lyapunov exponents for the system in the presence of noise which gives us

insights into the combinations of synaptic strengths and couplings required for the neurons

to undergo complete synchronization.

In a simulation of a neuronal ensemble containing 200 theta neurons with 150 excitatory

and 50 inhibitory synapses and with all to all coupling, we have shown synchronous firing of

all the neurons on introduction of weak white noise .

Keywords: synchronization, saddle node bifurcation, theta neuron, lyapunov exponent,

noise induced firing, noise induced synchronization
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Chapter 1

Introduction

The scientist does not study nature because it is useful; he

studies it because he delights in it, and he delights in it be-

cause it is beautiful. If nature were not beautiful, it would not

be worth knowing, and if nature were not worth knowing, life

would not be worth living.

J.Henri Poincaré

Synchronization is one of those phenomena in nature which transcends the bound-

aries of different disciplines and which manifests in nearly every branch of the natural

sciences, in engineering and also in social life. Synchronization is encountered in various

systems: from electrical power systems to fireflies emitting sequence of light pulses, from

the chirping of crickets to ensembles of neurons, from pendulum clocks to the Belousov-

Zhabotinsky reaction. Scientists hailing from physics, genetics, psychology, chemistry,

entomology, engineering, computer science and mathematics are constantly uncovering

new examples of it[1]. Even coupled chaotic systems can undergo a transition to synchro-

nization. This in fact finds applications in communication. Recent evidence shows that

common noise can also induce synchronization in nonlinear oscillators including in the

chaotic ones. This is quite counterintuitive as noise is always equated with disorder.

Synchronous phenomena have attracted the interest of scientists over the centuries,

Historically, it was mainly investigated in man made devices like pendulum clocks, electronic-

devices, electric power systems, etc. Discovered by Christiaan Huygens in 17th century

while he was lying ill in bed, he observed that two pendulum clocks hanging from the
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same support beam swung in perfect anti-phase. He also very much correctly inferred

that this synchrony between the clocks is due to the motion imparted to the beam by the

pendulum clock; this motion is of course imperceptible. The basis of synchronization is

interaction between two individual units — these individual units could be pendula, neu-

rons or fireflies. This interaction can often lead to synchronous activity emerging between

these units. That is what exactly Huygens also inferred.

In broad terms we can define synchronization as an adjustment of rhythms of oscillat-

ing objects due to their weak interactions[2]. The relevance of Synchronous phenomena

and their manifestation across such a broad array of disciplines is due to the presence

of vast numbers of these oscillating objects around us. It seems that synchronization is

one of the fundamental features of such systems. Real oscillators occurring in nature are

nonlinear. This fact has, in the the last few decades influenced the way we study synchro-

nization. The analytical and numerical methods and tools of nonlinear dynamics are now

used to analyze synchronization phenomena. These methods and tools make it possible

to predict the types and strength of coupling which could lead to synchronization, and to

study the stability of synchronized state in the presence of perturbations. In the study

presented, we have made use of several of such techniques such as Hilbert transform,

methods of bifurcation theory and calculation of lyapunov exponents.

Synchronization has many forms and the emergence of a functional relationship be-

tween variables governing the dynamics of the system is a consequence of a type of syn-

chronization called generalised synchronization (GS). Complete Synchronization(CS) is a

special case of this [2]. In CS the time evolution of the coupled systems is identical. CS is

also the rarest from of synchrony observed because it requires the coupled systems to be

identical in every respect and real systems are rarely identical. In non-identical systems

phase synchronization (PS) and frequency synchronization (FS) are commonly encoun-

tered forms of synchrony. In these kinds of synchronization the phase or the frequency of

coupled systems get locked. In chapter one we discuss types of synchronization in detail.

Biological systems abound with examples of rhythmic processes like beating of the

heart, the opening and closing of ion channels in cell membranes, blood cell levels, the

process of respiration, the daily cycle of waking and sleeping and many more processes

vital for living organisms. Some diseases occur due to abnormalities in the biological

rhythms. Mathematically these rhythms can be modelled through nonlinear equations
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and since analytical solutions can be often difficult to obtain in such equations, we need

to resort to numerical simulations to understand these rhythms[3]. Because of the impor-

tant role played by rhythms in nature, scientific interest in synchronization phenomena

in physical and biological systems has grown manifold. In this dissertation we present a

study of a biological system — a pair of coupled neurons. It is thought that synchronous

firing of neurons plays a central role in the way the brain performs some cognitive tasks

such as visual perception,feature extraction and recognition, etc. A key element in neu-

ronal information processing is phase synchronization of neurons. On the other hand

synchronous phenomena can also have negative effects for instance increased synchrony

can also lead to pathological types of activity such as epilepsy. In neurosciences there is

an ongoing endeavor to understand the precise mechanism and conditions under which

neurons synchronize.

An important feature associated with biological systems is the presence of random

fluctuations in there rhythms or what we call “noise”. The origin of these fluctuations

can be traced even upto the cellular level in biological systems. For example the opening

and closing of ion channels in cell membranes is a stochastic process. Noise is inherent in

biological processes and it becomes very important to study the biological processes and

systems by taking this noise into account. So apart from the already present nonlineari-

ties in biological rhythms, now we have models with stochastic variables too. This makes

study of a biological system a formidable task even with modern day computers. Noise

can induce many interesting phenomena. For example when noise of optimal intensity

is presented to a nonlinear system it can lead to amplification of a weak input signal or

an enhanced response by the system — an effect known in the literature as “stochas-

tic resonance” (in externally driven systems) or “coherence resonance” (in autonomous

systems)[4]. Noise can also induce synchronization — this is a phenomenon which is still

not a well understood.

Neurons can be modelled as non-linear oscillators. In our work we have investigated

the effects of noise on the coupled dynamics of a special class of neurons[5],[6],[7]. We have

studied noise induced synchronized activity and firing in coupled theta neurons having

excitatory-excitatory and inhibitory-excitatory interactions, coupled both unidirection-

ally as well as bidirectionally. A theta neuron is described by a normal form equation for

a saddle-node bifurcation on invariant circle, bifurcation generic for neurons with Class-I
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excitability, the classification of neural excitability dating back to Hodgkin. The coupling

between these neurons is realized through synaptic conductances whose time evolution is

modelled with ordinary differential equations. The ODE for each synaptic gating variable

depends on the output of the presynaptic neuron. It is known that Class-I oscillators are

difficult to synchronize[8],[9]. We aimed to study noise – induced Synchronization in such

a system. We show and study complete synchronization in a system of coupled theta

neurons induced by common white noise. We also try to decipher the dynamics of this

system by using the techniques of stability analysis, lyapunov exponent and hilbert trans-

form. We also present some work regarding the weaker form of synchrony in nonidentical

coupled theta neurons meaning when we have inhibitory-excitatory (I–E); we are able

to show that noise does induces order in such cases also. Calculation of the Lyapunov

exponent for E–E as well as I–E system have not been done previously in the literature.

We present those here for the first time.

A realistic small scale model of brain should consist of ensembles of neurons, each

having sufficiently large number of spiking neurons with different bifurcation dynamics and

coupled according to some physiological basis. Under what conditions does synchronous

activity emerge in such an ensemble? Computational effort and resources to model even

a small such ensemble with real physiological conditions and parameters put in would

be no mean task. However one can attempt to capture key features of the real system

using appropriate simplified generic models. We have in our work included a simulation

of an ensemble of 200 generic class–I theta neurons bidirectionally coupled in an all to all

manner with both excitatory and inhibitory couplings.
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Chapter 2

Synchronization

Some twenty years ago I saw, or thought I saw, a synchronal or

simultaneous flashing of fireflies. I could hardly believe my eyes,

for such a thing to occur among insects is certainly contrary to

all natural laws.[10]

Philip Laurent

2.1 Introduction

Synchronization can be defined as the process of adjustment of rhythms of two weakly

interacting oscillators. In a system it can manifest as mere adjustment of phase or fre-

quency without affecting the amplitude of the system; in the more fascinating situation,

the frequency, phase and amplitude of the oscillators all get synchronized. This form

of synchronization is called the complete synchronization (CS). This chapter is a review

of some basic literature and known results on synchronization, beginning with a little

historical note.

Historical Note

The first reference to the phenomena of synchronization in scientific literature is found

in the works of Christiaan Huygens, the Dutch mathematician and physicist. In some of

the letters written to his father during February 1665, he talks about synchronous mo-

tion between two pendulum clocks interacting through a beam connecting the clocks. He

describes this phenomena as “sympathy of two clocks”. Also an observation of synchro-
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nization in acoustic systems exists in the famous treatise The Theory of Sound compiled

in the middle of the 19th century by J.William Strut (Lord Rayleigh).

Early theoretical studies on synchronization were made by E.V.Appleton and B. van

der Pol. During 1920’s they worked on triode generators and showed that the frequency of

the generator can be entrained or synchronized by weak external signal of slightly different

frequency.This work had lot of practical importance in radio communication systems.

Among early observations of synchronization of biological rhythms, mention may be

made of the first recorded observation of synchronous flashing in a large population of

fireflies by Englebert Kempter1 around 1680 during his voyage to Thailand. In 1729

the French astronomer and mathematician Jean-Jacques Dortous de Mairan recorded his

observations of biological rhythms in haricot bean plant. According to his observations

the leaves of the plant changed their orientations as day turned to night an example of

synchronization of biological cycles with earth’s daily cycle[2].

2.2 Types of synchronization

Before proceding further we need to discuss a little more about different forms of synchrony

observed. These forms are discused in detail in the next few sections of the chapter. In our

work we are most interested in complete synchronization. If we have two weakly coupled

oscillators and after little transient due to the presence of this weak coupling they undergo

a transition to a state where their time evolution becomes the same in terms of phase,

frequency and amplitude, such a transition is termed as complete synchronization. The

weak coupling between them could be deterministic or non-deterministic i.e introduction

of weak common noise can lead to a transition to CS[11]. Let the time evolution of

two systems be described by the variables y1(t) and y2(t) respectively. If due to a weak

interaction between these two systems a relationship of the sort y1(t) = φ(y2(t)) emerges

where φ is invertible, the two systems are said to be under generalized synchronization

(GS). In case of CS φ is identity. It is also possible that only either phase or frequency of

the two oscillators gets locked and amplitude of these oscillators remain uncorrelated, such

kinds of synchronization are termed as phase locking or frequency locking respectively.

1Dutch physician
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2.2.1 Mutual Synchronization

In this chapter and subsequent chapters we have focussed our study on synchronization

between two coupled oscillators. This type of synchronization is referred to as mutual

synchronization in the literature. We have discussed mutual synchronization both in

deterministic systems, i.e when there are no random fluctuations, and also in the nonde-

terministic case, i.e, in the presence of random fluctuations or noise. We have in our work

not considered cases in which synchronous activity is observed between an external drive

and the oscillator i.e when there is only a driving by a source but no feedback to influence

the source.

2.2.2 Complete Synchronization

Complete Synchronization can be classified further into local and global synchronization

.Local synchronization is stable – small perturbations cannot desynchronize the system.

In global synchronization, the system approaches synchronous dynamics asymptotically.

So whatever might be the initial condition, the system will ultimately synchronize. In the

next part of this section we look at mathematical conditions required to be satisfied for a

system to undergo a transition to these simplest forms of CS. First we look at conditions

for coupled linear equations and then for coupled non-linear equations. Later we will

discuss CS in chaotic systems.

Case I. Coupled linear system

Consider a linear system

Ẋ = AX (2.1)

where A is an n × n matrix. Now we introduce a coupling c in the following way in the

above system

Ẋ1 = AX1 + c(X2 − X1) (2.2)

Ẋ2 = AX2 + c(X1 − X2) (2.3)

writing the the above equation in matrix form as





Ẋ1

Ẋ2



 =





A − c c

c A − c









X1

X2



 (2.4)
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Defining the difference Y = X1 − X2 then from above equations we get

Ẏ = (A − 2cI)Y (2.5)

Now if the eigen values of A are λ1, λ2, ....., λn the eigen values of A − 2cI will be λ1 −

2c, λ2−2c......, λn−2c The condition for having asymptotically stable equilibrium point at

origin for Eq(2.5) is Re(λi) < 2c .It means that when this particular condition is satisfied

above system undergoes global synchronization i.e

lim
t→∞

Y(t) = lim
t→∞

|X1(t) − X2(t)| = 0 (2.6)

Otherwise if origin is only stable equilibrium point then system undergoes local syn-

chronization .

Case II. Coupled non-linear system

Let a general autonomous system be described by :

Ẋ = f(X) (2.7)

Then consider the pair of systems coupled through a parameter c as follows:

Ẋ1 = f(X1) + c(X2 − X1) (2.8)

Ẋ2 = f(X2) + c(X1 − X2) (2.9)

On linearizing Eq.(2.7) we will get




Ẋ1

Ẋ2



 =





A(t) − cI cI

cI A(t) − cI









X1

X2



 (2.10)

Ẋ = A(t)X (2.11)

where the matrix A(t) = DX(f(X1(t)) is evaluated along the synchronized trajectory

X1(t) = X2(t).

For the above case there exists a synchronization theorem[12] which we state it below

without proof.

Theorem 2.1 :- If λ1 is the largest Lyapunov exponent of system described by

Eq.(2.7) & by the coupling is two way as in the coupled equations Eq.(2.8) & Eq.(2.9)

and c > λ1/2, then the coupled system satisfies local synchronization. That is, the

synchronized state Y(t) = X1(t) − X2(t) = 0 is a stable equilibrium.
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Complete Synchronization in coupled chaotic system

System exhibiting chaotic behaviour show sensitive dependence on initial conditions.

Hence two independently evolving chaotic systems, though identical do not synchronise.

Pecora and Corroll.[13] showed however that by introducing an appropriate coupling be-

tween them, it is possible to synchronise even chaotic systems. Their important work

finds applications in secure communications of digital and analog signals in chaotic cryp-

tography etc. This type of synchronization is termed as master-slave synchronization.

They used the Lorenz system as an example to show CS in chaotic systems.

-20 0 20 -25 0 25

 0

 50

 z 

 x  y 

 z 

 z
 

 Time 

-20 0 20 -25 0 25

 0

 50

 z 

 x  y 

 z 

 z
 

 Time 

Figure 2.1: Output of two Lorenz’s systems at different initial conditions (Left: Lorenz

attractor ,Right: Time series for z-variable),in upper panel two systems are uncoupled

and in lower panel they are coupled as master(red) and slave(blue)

The master-slave coupling was achieved in the following way. The first Lorenz system

described by the variables (x1, y1, z1) may be taken to be the sender or the master and

the second Lorenz system (x2, y2, z2) as the receiver or slave. The equations representing

11



the master system are

ẋ1 = −σx1 + σy1

ẏ1 = −x1z1 + rx1 − y1 (2.12)

ż1 = x1y1 − bz1

and the slave is given by

ẋ2 = −σx1 + σy2

ẏ2 = −x1z2 + rx1 − y2 (2.13)

ż2 = x1y2 − bz2

Eq(2.13) represent the slave system since it contains a signal x1 from its master, or the

sender,Eq(2.14). An implementation of the Pecora – Caroll method is shown in fig 2.1

in which we have taken the initial condition for the master system x1 = −15.0, y1 =

12.0, z1 = 11.5 and those for the slave to be x2 = −15.05, y2 = 12.1, z2 = 11.0. The values

of the other parameters were as follows σ = 10.0, r = 28.0, b = 8.0/3.0. We observe that

the two chaotic systems having different initial conditions and evolving independently

now have the same time evolution. This result has practical application in the control of

chaos and communication systems.

It is also possible to achieve similar sort of synchronization using the coupling discussed

in Section(2.2.2).The coupling term will be proportional to the differences (x1 − x2, y1 −

y2, z1−z2) and at the transition to CS these couplings will become zero so that each system

will become free of the other’s influence at this stage. Hence one obtains two identical

chaotic systems (same values of parameters) starting at different initial conditions but

having same time evolution after some transients governed by the synchronization theorem

2.1[14].

2.2.3 Phase and Frequency locking : weaker forms of synchrony

Phase Locking

Synchronous activity can also emerge in the phases and frequencies of the system without

affecting the amplitude. If the phase difference of two oscillators becomes a constant then

that situation is termed as phase-locking. Let φ1 and φ2 denote the phases of the two
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oscillators and let ∆φ denote their difference. Then one can have ∆φ = 0 corresponding

to in phase synchronization, and ∆φ = π corresponding to antiphase or out of phase

synchronization Fig(2.2.3). The coupling has two totally distinct effects on phases –

either it brings them together or it takes them apart. One could also have higher order

phase-locking in an n : m ratio defined by |nφ1 − mφ2| < constant.

 φ
1,

2 

 time 

 In Phase Synchronization 

 φ
1,

2 
 time 

 Out of Phase Synchronization 

Figure 2.2: Possible forms of phase synchronization.Left: in–phase synchronization .Right:

Out of phase synchronization

Frequency Locking

Let ω1 and ω2 denote the frequencies of the oscillators when they are uncoupled. On

coupling, the frequencies of these interacting oscillators change to Ω1 and Ω2. If the

coupling is sufficiently strong then a state can be reached at which Ω1 = Ω2 = Ω, and

one then says that oscillators are frequency locked Ω typically being ω1 < Ω < ω. The

condition for higher order frequency locking i.e in a ratio m : n is mΩ1 = nΩ2, generally

this occurs when in the uncoupled system one has mω1 ≃ nω2

2.2.4 Generalized Synchronization

When we have nonidentical systems coupled together, strictly speaking it is difficult to

observe CS. It might be possible that for sufficiently strong couplings a functional relation

emerges between the variables of the two interacting systems. For instance if x1 and x2

represents the dynamical variables of two non-identical interacting systems, a functional

relationship of the form x1 = F(x2) could emerge between the two systems. This implies

that if F is known then the state of the second system can be determined. This regime

is called generalized synchronization (GS). It is usually observed for the cases where we
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have unidirectional coupling or what is also known as master–slave coupling. CS is just

a case of generalized synchronization where F becomes an identity.

2.3 Noise induced synchronization

Till now we have only considered the deterministic case. Interestingly, common noise

can also induce synchronization in a system of coupled oscillators including chaotic ones.

Oscillators in nature are always subject to some natural fluctuations and these fluctuations

can be modelled by some random process, or noise. The interpretation of phase in the

presence of noise requires a statistical approach. In the presence of noise phase becomes

a stochastic variable and both phase φ1,2(t) and phase difference ∆φ(t) = φ1(t) − φ2(t)

perform motion similar to Brownian motion. Their evolution can therefore be regarded

as performing random walk in a potential and this observed phenomenon is called phase

diffusion. Synchronization induced by noise is usually interrupted by abrupt changes in

the phase difference called phase slips[4]. If the noise is weak and bounded then it never

causes phase slips whereas in the case of strong bounded noise or unbounded noise(e.g

Gaussian), phase slips occur and hence phase locking and frequency locking cannot be

defined in a manner similar to that defined above for the deterministic case. In the

presence of noise we look at the distribution of ∆φ(t) on a circle [0, 2π] or [−π, π]. A peak

in this distribution is indicative of a preferred phase difference which we can consider as

a condition for phase locking in the presence of noise[2].

Noise induced synchronization in chaotic systems

Introduction of common noise in a system of two identical chaotic systems coupled to-

gether can induce complete synchronization in them. A condition necessary for this

to happen is that the largest Lyapunov exponent (Chaotic systems have positive non-

zero largest Lyapunov exponent) become negative at the transition to the synchronized

state[11]. In reality, systems are typically not identical and CS is difficult to observe

in nonidentical systems. Further it has been shown in numerical studies that in coupled

non-identical choatic systems zero Lyapunov exponent becomes negative undergoing noise

induced phase synchronization[11]. Where the phase synchronization’s interpretation was

taken in statistical sense as described in the previous section.

14



2.4 Examples of synchronization

Synchronization is observed in various physical, chemical and biological systems. The

purpose of this section is to demonstrate the phenomena of synchronization in different

real systems .We have only discussed very few examples from the huge number of available

ones, but these examples will be ample proof of the fact that synchronization is a very

widely occurring phenomena in nature.

Coupled Pendulum clocks:- Historically, one of the first observations of the phe-

nomenon of synchronization was recorded by Christiaan Huygens around 1665. He was

also the inventor of pendulum clock. He recorded the motions of two pendulum clocks

suspended by hooks from a wooden beam. He noted that the motions of each pendulum

in opposite swings were in exact agreement with each other. These clocks were able to

establish this agreement in their motion even if they were perturbed a little. From this

Huygens inferred that synchrony in motion was due to the motion of the beam which was

not quite perceptible. His observation was that of an anti-phase mutual synchronization

of the clocks due to the coupling via the beam.

Triode Generators:- Another important historical example of observation of synchro-

nization was made by E.V Appleton in 1922 in his experiment with two coupled triode

generators. Each generator had an amplifier(triode vaccum tube), an LC-circuit acting

as an oscillator and a feedback implemented by connecting another inductance. The cou-

pling was realised by placing the coils of the two circuits nearby so that their magnetic

fields overlapped. The frequency of one of the circuit was varied by putting a variable

capacitor. Appleton observed that as the frequency of the circuit was varied, the second

circuit was able to reset its frequency and synchronize with the first one.

Belousov-Zhabotinsky Reaction :- Periodic optical forcing of light sensitive Belousov-

Zhabotinsky reaction can transform a rotating spiral wave pattern to a labyrinthine pat-

tern. The two domains in labyrithine pattern oscillate (changing intensity) with a natural

frequency of f◦ = 0.028Hz. Varying the frequency of the periodic optical forcing produces

a sequences of frequency locked regimes[15].

Acoustic synchrony in snowy tree Cricket :- The Snowy tree cricket(Oecanthus ful-

toni)is a white or pale green coloured insect found in the United States, is sometimes

called the thermometer cricket because it has been observed that its chirps are easily

countable and their rate correlates well with the temperature of the place. Snowy tree
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crickets have this ability to synchronize their chirps by responding to the preceding chirps

of their neighbours. If a neighbour’s chirp precedes its own, a cricket shortens its chirp in

the following interval. If it follows his own, he lengthens his chirp interval and sometimes

the following chirp. To establish this T.J. Walker[16] performed a experiment in which

he played a prerecorded chrip continuously to male crickets kept inside a seprate glass

containers. He found also that these insects can achieve synchrony very fast, i.e within

two cycles.

Synchrony in fireflies:- Since hundreds of years travellers to Southeast Asia were per-

plexed on seeing mass synchrony in flashing congregations of firefiles. They popularised

it by writing about it on their return. It is known that male fireflies emit rythmic light

pulses to attract females (they have light emitting cells in there abdomen). It has been

observed that they can synchronize their flashes with their neighbours. The modern

study of synchrony in fireflies dates from 1968, when John and Elisabeth Buck used cine

photography and photometry to demonstrate that a certain number of Southeast Asian

firefly species flash in rhythmic synchrony [17]. As each firefly in a congregation can be

treated as individual oscillator, so studies were carried out on how single fireflies respond

to a stimulant. It was found that firefly adjusts its flashing cycle with its neighbour by

restting its phase and changing the frequency of its flash. It is one of the best examples

of emergence of collective synchronization in living organism.[1]

Synchrony in predator-prey cycles Synchrony can also be observed in spatially ex-

tended ecological systems. A popular example is the prey-predator cycle. The most stud-

ied among the different predator-prey cycle is the one concerning the Canadian hare–lynx

cycle.A very strange fact about them is that the abundance of the species in different

regions of Canada get phase synchronized. Their amplitudes remain uncorrelated and

vary chaotically. The migration of these animals between different regions act as kind of

coupling or interaction. The abundances oscillate regularly and periodically in phase and

this intreaction induces a synchronization in phase.[18]

2.5 Role of Synchronization in neuronal systems

Synchronization is thought to be the central mechanism for neuronal information process-

ing and also for communication between different areas of the brain. It plays key role in
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the visual perception . Visual features in an image are perceptually grouped when popula-

tions of neurons in separate parts of the cortex synchronize their activities. Motor control

depends on integration and co-ordination of information in sensorimotor cortex and there

is evidences that this becomes possible due to the synchronization of oscillatory activity

in the sensorimotor cortex. Synchronization of neurons in sensorimotor cortex helps in

the integration and coordination of information underlying motor control. Even abnormal

forms of synchronization in neurons can cause some disorders like epilepsy. It has been

found to be responsible for generation of pathological tremors. Many vital rhythms like

respiration in the body are synchronized and these rhythms are produced by synaptically

coupled pacemaker neurons in the lower brainstem. It is possible to measure synchronized

firing of neurons by EEG (electroencephalography). A usual observation from the spectral

analysis of EEG is that neurons can oscillate in various frequency bands. Another impor-

tant observation is that in neuronal ensembles, neurons fire in synchrony when different

stimuli (like visual,odorous etc) are applied to them [19].
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Chapter 3

Neuron Models

The sciences do not try to explain, they hardly even try to inter-

pret, they mainly make models. By a model is meant a math-

ematical construct which, with the addition of certain verbal

interpretations, describes observed phenomena. The justifica-

tion of such a mathematical construct is solely and precisely

that it is expected to work.

Johann Von Neumann

3.1 Introduction

The brain is one of the most intricate objects in nature and its building blocks are the

neurons. Without understanding the dynamics of a single neuron it will be impossible to

understand fully how the brain does all the computations. There are many mathematical

models of a single neuron constructed to capture some of the features of its dynamics

like bursting, excitability, threshold behavior etc. In this chapter we briefly outline the

biological aspects of a neuron and then we briefly review three mathematical neuron

models, viz. Hodgkin–Huxley, Morris–Lecar and Theta Neuron model. We have added a

short note on the classification of neuron models based on bifurcations.

The simplest and minimal model to mimic the dynamics of the brain could be a pair

of neurons connected through some dynamical couplings. In this chapter we also present

some of the results we have obtained in our study about the dynamics of a pair of theta

neurons coupled through dynamically evolving variables based on biologically plausible

synaptic conductances.
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3.2 The Neuron

Neurons are the basic computational units of the nervous system and constitute a major

part of the brain, the other constituent elemental units of the brain being the neuroglia

and Schwann cells. The brain consists of around 1011 neurons. Each neuron on an average

is connected to 10, 000 other neurons. There is even a diversity in the types of neurons

on the basis of different shapes, sizes, forms and functions. Their ability to transmit

electric signals rapidly over large distances distinguishes them from any other cells in

the body. These electric signals are referred to as action potentials or nerve impulses or

spikes. Fig(3.1) illustrates the structure of a typical neuron. A typical neuron has four

Figure 3.1: Structure of typical neuron

important morphological features– dendrites, cell body, axon and pre-synaptic terminals.

The dendrites receive the inputs from other cells— the branches of the dendrites allow a

neuron to receive inputs from many other neurons through synaptic connections. The cell

body is the metabolic center of the neuron. The inputs receieved through dendrites are

processed and integrated in the cell body and sent through the axon hillock in the form

of an action potential through the axon which carries neuronal output from one cell to

other. They can be very long and can traverse the whole body. Axons are usually covered

with an envelope of myelin sheath which is made of phosphorated fats. The axon also

sends out branches which allow the output to be directed to many locations on muscle

cells or other neurons. The terminal end of an axon divides into fine branches that have

specialized swellings called the presynaptic terminals; these are the transmitting elements

of neurons. The junction between the axon and the dendrite of a target neuron across

which they communicate is called a synapse. In later part of this section we will discuss
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synapses further [9][20][21][22].

Ion Gates

A neuron is enclosed by a membrane which separates the intracellular fluid from the

extracellular fluid. The cell membrane is a thin bilayer of lipids and it is impermeable to

most of the charged molecules. Most of the time a concentration difference exists between

the inside and the outside of the neuron, with negative ions being in excess inside the

neuron. This happens because of the presence of pore-forming proteins in the membrane

which act as ion gates. There are two types of these ion gates of which the ones that

create and maintain this concentration gradient are called the ion pumps and the others

are ion channels which give the ability of selective permeability to the membrane. These

ion channels allow ions to move in and out of the cell and thus control the flow of ions

by opening and closing in response to voltage changes and to both internal and external

signals. The membrane conductance depends on the density of ion channels present on

the membrane and the conductance of individual channels depend on many different

factors including the membrane potential. The most predominant ions involved in the

ionic mechanisms of a neuron are sodium Na+, potassium K+, calcium Ca2+ and chloride

Cl−. In the resting state of a neuron, Na+ concentration is higher outside the neuron

whereas K+ has higher concentration inside[22].

Figure 3.2: Left :Ion Channels embedded in the cell membrane. Right: An action potential

showing the time scale and voltage involved in its generation (recorded from a cultured

rat neocortical pyramidal cell) [22]
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Action Potential

The unequal concentration of ions between the intracellular and extracellular fluids leads

to generation of electric potential called the resting potential. Empirically its value has

been found to be around −65mV . The process of generation of an action potential involves

very rapid depolarization of the membrane . When an external current is injected into

the neuron it leads to opening of sodium channels. As a result there is heavy influx of

Na+ into the membrane, which in turn sets in a positive feedback process making the

potential more positive and it shoots to 20mV . At this point the K+ channels open

and the potential returns to −75mV and then again slowly relaxes to resting potential

by releasing Cl− ions. This whole process gets over within 1ms. An action potential

proceeds along the axon by successive excitation of segments of the membrane in the way

described above. The speed of propagation of the action potential varies between 1 and

100m/s. The importance of action potential is due to there ability to cover large distances

at a rapid rate[22].

Synapses

Neurons are connected to each other through synapses. Among the two types of synapses

i.e. chemical and electrical, the chemical synapses are more common in the vertebrate

brain. In chemical synapses the terminal point of the axon has a large bulb like shape

which consists of vesicles which have neurotransmitters in them. There is no direct con-

tact between the presynaptic and postsynaptic neurons but a small gap having a width

of about 20nm exists between them called the synaptic cleft. The working of chemical

synapses involves a complicated set of steps. When a nerve impulse arrives at an axon

terminal it leads to a inward flow of calcium ions. These calcium ions induce a complex

process called exocytosis in the vesicles which causes release of neurotransmitters into the

synaptic cleft. These neurotransmitters have the ability to influence the conductivity of

postsynaptic membrane. At these stages two entirely different effects can be observed.

If the postsynaptic membrane depolarizes then we say that an excitatory postsynaptic

potential has been induced and the corresponding synapse is termed as excitatory. Oth-

erwise if hyperpolarization of the postsynaptic membrane occurs then such a synapse is

called inhibitory and the effect induced is an inhibitory postsynaptic potential. In elec-

trical synapses electrical impulses are exchanged directly between the neurons through
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openings in the cell membrane and hence these are also known as gap junctions. Unlike

chemical synapses they are bidirectional and also the time required for current flow is

lesser[21],[23].

3.3 Hodgkin-Huxley model

In the early 1950’s Alan Lloyd Hodgkin and Andrew Huxley carried out a series of elec-

trophysiological experiments on the giant axon of the Atlantic squid (Loligo pealei), using

voltage clamps. Based on these experiments they modelled the ionic events which occur

during the generation of the action potential by means of a set of differential equations[24].

Hodgkin and Huxley were awarded Noble prize in Physiology or Medicine for this work

in 1963. In the Hodgkin–Huxley model the ionic current has three components classified

by their carrier ions, viz., sodium ions INa, potassium ions IK and a small leakage current

Il due to chloride ions. The cell membrane has selective permeability and it acts as a

separator between the extracellular liquid and interior of the cell and its action is anal-

ogous to a capacitor. A Nernst Potential develops due to the concentration gradient in

ions between the inside and the outside of the cell. This potential is represented by the

battery in Fig(3.3) which is the circuit representation of the Hodgkin–Huxley model.

Figure 3.3: Circuit representation of Hodgkin-Huxley model

The total current I in the circuit is given as :

I = IC + Iionic (3.1)
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Where Iionic is the total ionic current & IC is the capacitor current. If V is the displacement

of the membrane potential from its resting value and C represent membrane capacitance

per unit area then we will have IC = C dV
dt

with the total ionic current Iionic = INa+IK +Il.

The conductance of the ionic current has relative dependence on the number of open ion

channels. To take this dependence into account Hodgkin and Huxley introduced gating

variables m,h for Na+ ions and n for K+ ions. The individual ionic currents are given as

follows

INa = gNam
3h(V − ENa)

IK = gKn4(V − EK)

Il = gl(V − El) (3.2)

where gNa, gK are the maximum possible conductances of Na+ and K+ ion channels

respectively. gl = 1/R is conductance of the leakage current ENa, EK and El stands for

reversal potential. Eq(3.1) can be written as

I = C
dV

dt
+ gNam

3h(V − ENa) + gKn4(V − EK) + gl(V − El) (3.3)

Where gNa, gK , gl, ENa, EK and El are all empirical parameters. The gating variables m,

h and n variables are dynamical and they are governed by first order rate equations with

voltage dependent parameters[21].

ṁ = αm(V )(1 − m) − βm(V )m

ṅ = αn(V )(1 − n) − βn(V )n

ḣ = αh(V )(1 − h) − βh(V )h (3.4)

α and β are obtained by fitting experimental data. At temperature 6.3◦C these voltage

dependent parameters are given as

αm =
0.1(25 − V )

exp [(25 − V )/10] − 1
, αn = 0.01(10−V )

exp [(10−V )/10]−1

αh = 0.07 exp (−V/20), βm = 4 exp (−V/18)

βn = 0.125 exp (−V/80), βh = 1
exp [(30−V )/10]+1

(3.5)

The formulation represented by Eq(3.3),Eq(3.4) and Eq(3.5) forms the Hodgkin-Huxley

model of a neuron[25].
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3.4 Morris-Lecar model

This model was developed by C.Morris and H.Lecar in 1981 based on electrophysiology of

the muscle fiber of the barnacle (Balanus nubilus)[26]. When subject to constant current

input the muscles fibre produce oscillatory voltage waveforms as their response. The

original form of this model has three variables but here we present a simplified version of

it which has only two variables. The muscle fiber of a giant barnacle has only two types

of channels K+ and Ca2+. The Morris -Lecar model has two types of ionic currents, an

outward going potassium current and an inward going calcium current. Assuming the

Ca2+ current to have a faster time scale than that of K+, we have the following set of

ODE’s

dV

dt
= I − gl(V − Vl) − gKw(V − VK) − gCam∞(V )(V − VCa)

dw

dt
= λ(V )(w∞(V ) − w) (3.6)

with

m∞(V ) = 0.5(1 + tanh(
V − V1

V2

))

w∞(V ) = 0.5(1 + tanh(
V − V3

V4

))

λ(V ) = φ cosh(
V − V3

2V4

)) (3.7)

where, gK and gCa are potassium and calcium conductances respectively and gl is the

leakage conductance. VK , VCa and Vl are the corresponding reversal potentials . w

represents the fraction of K+ channels which are open. The Ca2+ channels are assumed

to get activated instantaneously. w∞ and m∞ are gating variables, and V1,V2,V3,V4 and

φ are constants.

The values of the constants are as follows :- gK = 2.0, gCa = 1.33, gl = 0.5, VK = −0.7,

VCa = 1, Vl = −0.5, V1 = −0.01, V2 = 0.15, V3 = 0.1, V4 = 0.145, φ = 1/3.
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Figure 3.4: Input response curves for type I and type II excitability

3.5 Classification of neural excitability and correspond-

ing generic bifurcations

Before proceeding further, to the next model we will give brief outline of the classification

of neurons based on their dynamics – their excitability patterns and associated bifurca-

tions. We will also use some of the concepts introduced in this section to derive the theta

Neuron model from Morris-Lecar model.

3.5.1 Hodgkin Classification of neural excitability

Even before bifurcation theory was developed, Hodgkin gave a classification for neurons.

He classified neurons into the following two classes based on his electrophysiological ex-

periments on the axon of squid neuron. He stimulated a cell with current of different

strengths and made measurements of emerging frequencies of the action potential and on

the basis of his recordings he made the following classifications[27]:

Type I neural excitability: The frequency of action potential increases with in-

creasing applied current. It is possible to generate action potentials with arbitrarily low

frequencies.

Type II neural excitability: The frequency of the action potential is insensitive to

changes in the applied current.

Fig(3.4) shows the input to frequency response curves of type I and type II neural

models. Hodgkin’s classification went unnoticed until Rinzel and Ermentrout published

their work in 1989[28]. They treated the input current in neuronal models as a bifurcation
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parameter. As the input current is increased a bifurcation is induced and the type of

bifurcation determines the type of excitability. Type I corresponds to saddle-node on

invariant circle bifurcation. When the input current crosses the threshold value, the

neuron starts to fire. The frequency of firing changes with change in the input current.

Hence the model of this class are known as integrators. The Morris-Lecar model and

the theta neuron model are examples of this class. In Type II the underlying bifurcation

is Andronov-Hopf. The frequency of firing is insensitive to change in input current.

Such type of neurons fire only in a certain frequency band and therefore these are called

resonators. The Hodgkin- Huxley models is an example of this class.

Although electrophysiologically there can be several mechanisms for excitability and

spiking, there are however only four generic bifurcations a system can undergo in the

absence of any additional constraints[9], [20].

3.5.2 Review of some relevent codimension 1 bifurcations

Saddle-node bifurcation

The normal form equation in 1–D for this type of bifurcation is

ẏ = β + y2 (3.8)

where β is the bifurcation parameter. For β < 0 we have two fixed points one stable and

another unstable , as β is increased to β > 0 through β = 0 these two fixed points coalesce

and annihilate each other. We can clearly distinguish the two states as the resting state

(β < 0) and spiking state (β > 0). Hence we can model the neuron’s dynamical property

of excitability and spiking using this model equation.

Saddle-node bifurcation on an invariant circle

Performing the transformation of variables y = tan(θ/2) in the Esq(3.8) then one obtains

the following equation

θ̇ = (1 − cos(θ)) + β(1 + cos(θ)) (3.9)

This is the normal form equation for a saddle-node bifurcation on an invariant circle

(SONIC) .This particular equation also represents the theta neuron model which is also

the model we have used in our study. It is very much similar to saddle-node bifurcation
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except that now the bifurcation occurs on an invariant circle i.e coalescing and annihilation

of fixed points occurs on an invariant circle with emergence of limit cycle attractor for

β > 0[8],[29].

Supercritical Andronov-Hopf bifurcation

The Andronov-Hopf bifurcation occurs in two or higher dimensional systems. The normal

form equation for the supercritical Andronov-Hopf bifurcation is as follows:

ṙ = µr − r3

θ̇ = ω + br2 (3.10)

where µ is the bifurcation parameter, ω is the frequency of the limit cycle and b relates the

frequency to the amplitude in the case of large amplitudes. Here we have a stable fixed

point (stable spiral) for µ < 0 which gets transformed into unstable spiral surrounded

by limit cycle as µ becomes greater than 0 . The effect of increasing µ will be that the

amplitude of the limit cycle will increase[30].

Subcritical Andronov-Hopf bifurcation

The normal form equation for this case is

ṙ = µr + r3 − r5

θ̇ = ω + br2 (3.11)

In this case for µ < 0 there are two attractors one a unstable limit cycle and a stable fixed

point at origin. As µ becomes 0 the unstable limit cycle shrinks to zero amplitude and

turns the stable fixed point at origin into unstable fixed point. Now for µ > 0 we have a

large amplitude stable limit cycle and a unstable fixed point at the origin[30].

3.6 Theta Neuron model

The theta neuron model is represented by canonical form equation of type-I excitability.

A model is called canonical for a family of dynamical systems if every member of that

family can be transformed by piecewise continuous possibly invertible change of variables.

The usefulness of working with canonical models lies in the fact that they can mimic
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the dynamical behaviour of the whole family[9]. In this section first we will review the

reduction of the Morris–Lecar model to the theta neuron model and then we will review

the dynamical properties of this model following ref.[8],[31],[32]. Let us write Eq(3.6) as

follows,
dV

dt
= I + g1(V,w)

dw

dt
= g2(V,w) (3.12)

where gi(V,w) corresponds to the nonlinear term on the right hand side of Eq(3.6). This

can be written in matrix form by defining vector Z = (V,w)T . Let I◦ be the critical value of

the current for saddle node bifurcation in Morris-Lecar model and Z◦ be the corresponding

point where a saddle node appears. Decomposing current I as I = I◦ + ǫ2∆I, where ǫ is

a small parameter. Eq(3.12) can be written as,

dZ

dt
= G(Z) + ǫ2∆I





1

0



 (3.13)

where

G(Z) =





I◦ + g1(V,w)

g2(V,w)





Peforming a Taylor’s expansion of G(Z) around (Z = Z◦ + ǫz(t)e) where e is the unit

eigen vector corresponding to zero eigen value of the Jacobian DZ(G(Z)) of G at Z◦.

G(Z) = G(Z◦) + DZ(G(Z◦))
T ǫze + eT D2

Z(G(Z◦))eǫ2z2 + ......

Subsituting the above Taylor’s expansion in Eq(3.13) we get

ǫe
dz

dt
= G(Z◦) + DZ(G(Z◦))

T ǫze + eT D2
Z(G(Z◦))eǫ2z2 + ǫ2∆I





1

0



 + ....... (3.14)

Let f denote a the left eigenvector such that f .e = 1. Now on projecting Eq(3.15) on to

f one gets.

ǫ
dz

dt
= f .eT D2

Z(G(Z◦))eǫ2z2 + +ǫ2∆If .





1

0



 + ....... (3.15)

Sinec the saddle node occurs at Z = Z◦, G(Z◦) = 0 and also fDZ(G(Z◦))
Te = 0. We can

define two quantities β and q as follows: β = ∆If.





1

0



 and q = f .eT D2
Z(G(Z◦))e.
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Then Eq(3.15) can be rewritten as

dz

dt
= ǫ(β + qz2) (3.16)

Which is the normal form equation for saddle node bifurcation .We can get the theta

neuron equation from this by carrying out the following transformation z = tan(θ/2) and

τ = ǫt, so Eq(3.16) becomes

dθ

dτ
= q(1 − cos θ) + β(1 + cos θ) (3.17)

We have therefore a normal form equation for a type–I neuron in the form of “phase

equation” with θ ∈ [0, 2π], θ(0) = θ(2π). In our simulations we have taken q to be unity

unity[31],[32]. Dimensionally, q and β are related to time scales, and the time scale of the

membrane potential turns out to be in milliseconds when q = 1 and β << 1. For sake of

convenience of notation, we drop the symbol τ for time and use t instead in Eq(3.17).

dθ

dt
= (1 − cos θ) + β(1 + cosθ) (3.18)

The Eq(??) has two fixed points for β < 0.

θ± = ± cos−1(
1 + β

1 − β
)

As β is increased these two fixed points moves towards each other and coalesce at β = 0

and a saddle node bifurcation occurs. When β > 0 there are no fixed point. Thus, a

neuron can be represented by a point moving on unit circle S1.

Figure 3.5: Bifurcation structure of theta neuron
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3.7 Coupled Theta Neurons

A network of N coupled theta neurons is given by the equations

dθi

dt
= (1 − cos θi) + (βi +

N
∑

j=1

αjgjisji)(1 + cosθi) (3.19)

where βi denotes the input current to the ith neuron. αi is a constant and it represents

the type of synapse. Its value is +1 for excitatory and −1 for inhibitory synapse. gji is

the measure of coupling strength from the neuron i to neuron j. Please note that we have

taken gij = 0 for i = j in all of our simulations. The dynamics of synaptic conductances

are modelled by the gating variable sji.

There are many ways to model synaptic conductances. In our simulations we have

used an ordinary differential equation to model them. The coupling presented here is

modelled under the assumption that synaptic transmission is also on the same time scale

as the spikes. The value of sji remains between 0 and 1. As the neuron j spikes, its

output jumps to 1 and then it slowly decays to 0. This decay is governed by the ordinary

differential equation of the form
dsji

dt
= −

sji

τji

where τji is decay constant. This model of synaptic conductances is not physiologically

adequate. Numerically as well it creates problems when jumps occur in sji. Therefore

we add one more term to the above equation. This term takes into consideration the

output of the presynaptic neuron and synaptic rise time. So we have the following ODE

governing the time evolution of the gating variable[31].

dsji

dt
= −

sji

τji

+ e−η(1+cos θj)
1 − sji

τR

(3.20)

Through this equation we are able replace the jumps by rapid smooth rise. This makes

numerical simulation of the synaptic conductances easier. The eq(3.20) also enables au-

tomatic regeneration of the next spike once the earlier has died down. So, in a system of

two coupled theta neurons we will have two feedback equations via the gating variables

s12 and s21.

To model the output of the theta neuron a to look as close as possible to the membrane

potential of real neurons we have defined the neuron output as [33],[5],[6],[7]

xi = 0.5(1 − cos θi) (3.21)
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Figure 3.6: Bidirectional Coupling between two theta neurons.Left :excitatory - excitatory

(E-E) type coupling , Right :inhibitory - excitatory (I-E) type coupling

Figures (3.7) to (3.9) are plots of some sample times series for the kind of connections

shown in the Fig(3.6). For E-E case we have taken the following values of parameters

α1 = 1, α2 = 1, g12 = g21 = 0.3, τ12 = τ21 = 2.0, τR = 0.1, η = 5.0 and β1 = β2 = 0.01 and

the initial conditions are θ1 = 0.0, θ2 = 0.01, s12 = 0.0, s21 = 0.0. We have used finite step

size Runge-Kuta Fourth Order(RK-4) with time step h = 0.01 to solve the above coupled

differential equations numerically. We have generated a data set for 300, 000 iterations.

In the figures we show the end part of the time series after the transients have died down.

For the I-E case we have taken the following values of parameters α1 = 1, α2 = −1, g12 =

g21 = 0.3, τ12 = 2.0, τ21 = 10.0, τR = 0.1, η = 5.0 and β1 = β2 = 0.01 and the initial

conditions are θ1 = 0.0, θ2 = 0.01, s12 = 0.0, s21 = 0.0. A important observation is that in

IE case for these values of parameters the excitatory neuron are not firing maximally i.e

inhibitory neurons successfully able to inhibit the output of excitatory neuron. The time

evolution of s21 looks like relaxation oscillations.
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3.8 Dynamics of a pair of coupled Theta Neurons

Stability Analysis

We try to do a stability analysis of the system of equations governing the coupled theta

neuron. Defining new variable xi = 0.5(1 − cos θi) and then rewriting equations Eq(4.1)

and Eq(3.20) in terms of the xi’s for a pair of neurons the following four equations.

ẋ1 = (x1 + (β1 + α2g21s21)(1 − x1))
√

1 − (1 − 2x1)2

ẋ2 = (x2 + (β1 + α2g21s21)(1 − x2))
√

1 − (1 − 2x2)2

ṡ12 = −
s12

τ12

+ exp (−2η(1 − x1))
(1 − s12)

τR

ṡ21 = −
s21

τ21

+ exp (−2η(1 − x2))
(1 − s21)

τR

(3.22)

First we try to find out the fixed points (x1, x2, s12, s21) of the above system of

equations. Let us define aij =
τij

τR+τij
,bij =

τij

τRe2η+τij
, cij =

βj+αigijaij

βj+αigijaij−1
and dij =

βj+αigijbij

βj+αigijbij−1
Then fixed point can be written in terms of aij, bij, cij and dij as follows:

(1, 1, a12, a21), (0, 0, b12, b21), (1, 0, a12, b21), (0, 1, b12, a21),

(1, c12, a12,
τ21

τR exp[2η(1−c12)]+τ21
), (0, d12, b12,

τ21
τR exp[2η(1−d12)]+τ21

)

(c21, 1,
τ21

τR exp[2η(1−c21)]+τ21
, a21), (d21, 0,

τ21
τR exp[2η(1−d12)]+τ21

, b21)

These fixed points defy bifurcation analysis as the elements of the Jacobian blow up.

Apart from the above fixed points, other fixed point exist which are roots of the following

system of coupled equations.

x1 =
β1 + α2g21s21

β1 + α2g21s21 − 1

s21 =
τ21

τR exp[−2η(1 − x1)] + τ21

(3.23)
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and similarly of the system:

x2 =
β2 + α1g12s12

β2 + α1g12s12 − 1

s12 =
τ12

τR exp[−2η(1 − x2)] + τ12

(3.24)

the above equations are transcendental and cannot be solved analytically: Even if a

numerical approach is taken, these have a continous dependence on the values of the

parameters. Hence a local bifurcation analysis is difficult for this system, if not impossible.

To get over this problem and to understand the dynamics of the system we take a different

approach and try to analyze it using other numerical techniques which follow this section.

Frequency-Input curves and Lyapunov exponents

We take look at some more aspects of the dynamics of a pair of coupled theta neurons

through frequency-input curves and Lyapunov exponents. In first case Fig(3.10) we have a

EE system of bidirectionally coupled theta neurons and what we get is typical frequency-

input curve, the only difference being that even at β = 0.0 there is net frequency of firing.

It is happens because now the bifurcation parameter is Ii,the input for ith neuron and is

given by

Ii = βi +
N

∑

j=1

αjgjisji (3.25)

As noted earlier we take gij = 0 for i = j. Henc now we have some net positive input

going into the system due to the presence of second term αjgjisji.Both the frequency-

input curve and the lyapunov exponents indicate that for this set of parameter values

[refer:table(3.1)] the system is periodic with the presence of only a single frequency. In

the next case Fig(3.11) we have again taken bidirectionally coupled EE theta neurons

but with slightly different coupling strengths. In this case we see that there are two

frequencies in the system after β crosses a value of approximately 0.7 at the same point in

the lyapunov exponent curve and that the second largest lyapunov exponent also become

zero, indicating the presence of second frequency in the system. So we can say that as the

value of β is changed in this case, it makes a transition from a periodic to a quasiperiodic

state. In the third and last case we consider IE type system with bidirectional coupling,

the results being shown in Fig(3.12. Here we see that for small values of β there are

a lot of fluctuations in the frequency of the excitatory neuron. Similar fluctuations are
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Figure 3.12:

Figure.No. g12 g21 τ12 τ21 α1 α2 η τR

3.10 0.3 0.3 2.0 2.0 1 1 5.0 0.1

3.11 0.3 0.45 2.0 2.0 1 1 5.0 0.1

3.12 0.3 0.3 2.0 2.0 1 −1 5.0 0.1

Table 3.1: Values of parameters corresponding to the figures above the table
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observed in the Laypunov exponent curve also for small β(approx. β < 0.2, shown in the

inset curve). These fluctuations are due to the bifurcation parameter oscillating between

two regions. The stable region where Ii < 0 and the unstable region Ii > 0. It might

be possible that system is chaotic for some values of β < 0.2. The method followed in

calculating Lyapunov exponent is given in the Appendix A.

Bifurcation diagrams

We take a look at bifurcation diagrams,drawn very differently from the usual bifurcation

diagrams drawn on an invariant circle. Since we are taking x1 and x2, the membrane

potentials for most of our analysis including the above Hilbert transform. So it is a better

choice to draw bifurcation diagrams with them rather than with θ1 and θ2. One more

consideration in drawing them is to present the maximum possible information through

them. We know that in saddle node bifurcation on an invariant circle the firing starts

after β’s value crosses the threshold, which in our case is β = 0. Now on introducing the

coupling, the bifurcation parameter is the time evolving input I. But still the parameters

of the systems, i.e external input β and the couplings g12, g21 are important to us and we

can vary one of them keeping the other constant and see how the firing patterns change.

Fig(3.13) represents the case where we are keeping the coupling strength fixed at

g12 = g21 = 0.3, the values of other parameters are τ12 = 2.0,τ21 = 2.0,τR = 0.1. We

observe that when β < 0 there is no firing and when β > 0 there is no firing. Similar

diagram have been obtained for even the IE case also which we have shown below. In the

Fig(3.16) we show the effect of changing coupling strengths. In the Fig(3.8) we vary g’s

and in Fig(3.20) and Fig(3.21) we vary τ ’s. All the parameters are the same as in the

previous cases except the changing the values of α’s according to synapse type.
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Chapter 4

Noise induced Synchronization and

firing in coupled theta neuron

The game of science is, in principle, without end. He who

decides one day that scientific statements do not call for any

further test, and that they can be regarded as finally verified,

retires from the game.

Sir Karl Raimund Popper

4.1 Introduction

As we have mentioned in the introduction, noise is inherent in biological systems and

neurons are no exception to it. In this chapter we take a look at the effects induced by

noise on a system of coupled theta neurons. Our main interest in the work presented is in

noise induced transition to synchronization. Type I neurons are difficult to synchronize

under deterministic conditions, so we look at whether noise can induce synchronization

in a pair of coupled theta neurons. Considering different combinations of parameters

involved in this system, we try to find out how synchronous activity takes place [5],[6],[7].

It is well known that inhibition leads to synchronization in deterministic systems [35],[31].

The model of coupled theta neurons we have studied also shows parameter regimes where

there is collaborative activity between an inhibitory and an excitatory neuron. We have

investigated the effect of the noise in these regimes.
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4.2 Neuronal Noise

Neuronal noise is the term used for random influences on the transmembrane voltage of

single neurons and by extension the firing activity of neural networks. It can affect firing

activity of neurons and also can influence the transmission and integration of signals.

Origin of neuronal noise

Among various sources constituting neuronal noise, the contribution from synaptic noise

dominates. Fluctuations in the neurotransmittor level in the synapse constitute a impor-

tant source of synaptic noise in the neuron. Chemical synapses don’t work as deterministic

switches but they convert a spike into a fixed packet of neurotransmitters which are re-

leased in the synaptic cleft. Synapses realease neurotransmitters probabilistically and at

times even without incoming spike. The real reason for this lies in the molecular events

that precede the arrival of a spike at a synapse. The fluctuations in plasticity processes

also influence the strength of a synapse and it is possible that they also have some contri-

bution in overall synaptic noise[36]. But the dominant source of the synaptic noise is the

synaptic bombardment of the inputs: There are huge number of synaptic connections on

each neuron and each spike a neuron receives at its synapse adds some random current

to the cell. Another source of neuronal noise are the conductance fluctuations in ion

channels. There are two sources for these fluctuations, one is what is known as ion shot

noise which is due to the variability in the amount of ions migrating into the cell or out

of the cell when a channel is in its open state, thermal fluctuations constitute the other

source.

Modelling neuronal noise

Modelling neuronal noise involves the use of methods of stochastic dynamical systems.

The modelling of neuronal noise basically depends on the source of the noise. Gaussian

white noise is mainly used for modelling the internal sources of noise like thermal fluc-

tuations etc. as the time scales involved in their production are much faster than the

time scale of an action potential. Even though the synaptic noise production are at very

slow time scales but as a single neuron has several thousands of synaptic connections,

the cumulative effect of the fluctuations can be considered to be happening at faster time
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scale, justifying the use of Gaussian white noise to model the neuronal noise.

Effects of neuronal noise

Apart from assisting in synchronization, noise can induce many other effects in neurons.

We mention a few below.

Variability in firing :- Presence of noise term in the neuron model will make it act as

a stochastic oscillator. That is there will be variability in the firing pattern. If the

neuron is quiescent (below threshold), noise can induce firing[5],[6],[7]. We will show this

phenomenon in the theta neuron model in the next section.

Stochastic Resonance :- It is a phenomenon in which noise enhances the response of

a nonlinear system to small external time-dependent forcing. A similar phenomenon is

observed in neuronal models where a moderate amount of noise induces an output pattern

that shows the strongest signature of the periodic input[37].

Bursting :- Neuronal bursting has a role in the way neurons encode information. A small

noise can induce bursting in neuronal models[38].

4.3 Noise term in coupled theta neuron

Addition of Gaussian white noise on the right hand side of Eq(3.14) enters the theta

neuron model multiplicatively as an input as follows:

dθi

dt
= (1 − cos θi) + (βi +

N
∑

j=1

αjgjisji + σξ(t))(1 + cosθi) (4.1)

where ξ(t) is a Gaussian white noise with:

〈ξ(t)ξ(t − τ)〉 = 2δ(τ). (4.2)

and σ is the noise strength[39]. We interpret noise in the Stratonovich sense and integrate

it with the time step h = 0.01 using Stochastic RK-4(discussed in the Appendix C).
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4.4 Noise induced firing in coupled theta neuron

As noted earlier, we find parameter regimes where inhibitory spike is able to inhibit the

excitatory neuron completely [5],[6],[7]. We take another such parameter regime and try

to find the effect of introducing small noise in the system. We show our result in Fig(4.1)

and Fig(4.2). The values of the parameters take were as follows:- g12 = g21 = 0.25, τ12 =

τ21 = 2.0, τR = 0.1, η = 5.0 and β1 = β2 = 0.01. In the noise less case (Fig(4.1)) we
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Figure 4.1: IE coupling,in absence of noise i.e σ = 0
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Figure 4.2: IE coupling,in presence of noise i.e σ = 0.025

observe regular firing of the inhibitory neuron and the excitatory neuron does not fire at

all. On introducing a little noise in to system (σ = 0.025),the inhibitory neuron starts

to fire irregularly and also the interesting observation is that now excitatory neuron also

starts to fire. This happens because now the input of excitatory neuron is able to cross

the threshold due the presence of a finite amount of noise in it. To understand this we

rewrite the input whict enters into theta neuron as below :

Ii = βi +
N

∑

j=1

αjgjisji + σξ(t) (4.3)
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When βi = 0 and αj = −1 then Ii < 0 for σ = 0.0, and this means the neuron is below the

threshold of firing and hence in the absence of noise, excitatory neurons do not fire but

as we introduce some finite noise, it starts to fire. In Fig(4.3) we show that the frequency

of firing in the presence of noise is higher than in the noiseless case but as the external

input β is increased, the effect of noise on the firing frequency dies down. We obtained

similar results for EE case also.
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Figure 4.3: Frequency of firing and effect of noise on it for IE type cou-

pling(Above:Excitatory neuron,Below:Inhibitory neuron)
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4.5 Noise induced complete synchronization in cou-

pled theta neurons

Identical neurons

In this section we present our results on complete synchronization in theta neurons[5],[6],[7].

And also from our simulations we try to find out the factors which influence its stability. To

observe complete synchronization we need to have identical systems. So we take two E-E

coupled oscillators with identical parameters but different initial conditions. In the simu-

lation we have taken g12 = g21 = 0.3, τ12 = τ21 = 2.0, τR = 0.1, η = 5.0andβ1 = β2 = 0.1.

We observe complete synchronization between the neurons at a noise strength σ = 0.301,

i.e the time evolution of the two neurons become identical on introducing this much

amount of noise Fig(4.4,4.5 , 4.7b). In figure(4.7a) we had noise strength little lesser

i.e σ = 0.30, and the system does not get completely synchronized, but there is a large

window of complete synchronization.

Figure 4.4: EE coupling,in absence of noise i.e σ = 0

Figure 4.5: EE coupling,in presence of noise i.e σ = 0.301
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Figure 4.6: Output difference vs time for EE coupling in absence of noise σ = 0.0,below

same curve at two different noise strengths

Figure 4.7: (a):σ = 0.30 (b):σ = 0.301

Effect of coupling strength :- We had seen complete synchronization above in which

two systems started at different initial conditions but synchronized on introducing a noise

of optimal strength. We calculate a quantity 〈|x1−x2|〉, which is the average of modulus of

output differences taken over all the iterations. We plot this quantity as a function of the

coupling constant and the noise strength as shown in Fig(4.8) and Fig(4.9). We observe

a transition from the synchronized state to the unsynchronized state as the coupling

strength is increased for a particular noise strength. Also we see that a transition to

synchronization at higher values of coupling strength occurs at higher noise strengths.

There seems to be a functional relationship between coupling strength, noise and the

quantity 〈|x1 − x2|〉 [5],[6],[7].

Effect of the external input :- Here 〈|x1 − x2|〉 is plotted as function of β and shown

in Fig(4.10). The values of parameters and initial conditions are same as used in Fig(4.8)

and Fig(4.9). The only difference is that now the quantity varied is β1 = β2 = β and

coupling strengths are g12 = g21 = 0.3. We have varied β from 0 to 7, to see the whole
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parameter range. It is a little hard to make out much from this curve because as β is

increased at lower noise values the system is fluctuating between the synchronized and

unsynchronized state. But at the same time it should be noted that at a moderate noise

strength of σ = 0.6 the system is synchronized for whole of the regime of β shown in the

curve.
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Figure 4.10: Input vs 〈|x1 − x2|〉 at different values of the noise strength

We can also visualize the effect of change in input as shown in Fig(4.11) and Fig(4.12)

[5],[6],[7]. Again in these curves also we see at strong noise, the system is synchronized

even for very high values of β.

Effect of noise strength :- It is interesting to find out how noise strength affects the

system if it is increased keeping all the parameters constant. In other words what is the

difference between two values of noise strengths for both of which complete synchroniza-
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Figure 4.11: In presence of noise,σ = 0.375
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Figure 4.12: In presence of noise,σ = 1.0

tion occurs. For this purpose we try to find out the time in which system synchronizes

using the normal clock function available with C-programming language and measure the

time. The result is plotted in the Fig(4.13) [5],[6],[7]. From the curve it is apparent that

synchronization occurs faster as noise strength is increased. Tsyn is the time the system

takes to synchronize. It is clearly reducing as the noise strength is increasing.
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Figure 4.13: Effect of noise on rate of synchronization

Lyapunov exponent in presence of noise

In the course of study of the system of coupled theta neurons, we calculated Lyapunov

exponents. In Fig(4.14) and Fig(4.15) we have shown the curves of largest Lyapunov

exponent in presence of noise [5],[6],[7]. This also, just as all other results in this disser-

tation, has not been published earlier in the available literature. The parameter used for
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EE and IE cases were β1 = β2 = 0.1 τ12 = τ21 = 2.0, τR = 0.1, η = 5.0. In the both

cases we observe that it becomes negative on adding noise. It is thought that a negative

Lyapunov exponent in the presence of noise indicates synchronization in the system. But

it is not a conclusive proof for predicting noise induced synchronization. However, it still

seems that two identical excitatory neurons will undergo complete synchronization, as

also two identical inhibitory neurons among themselves. In a simulation of 200 neurons

in Section(4.8) we give a proof of this prediction. It is important to look at what happens

in case of two nonidentical neurons, but we can’t make any definite prediction based on

presented calculation of Lyapunov exponents. Complete synchronization in a system of

200 nonidentical neurons has also been observed by us for the first time[5],[6],[7].
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Figure 4.14: Lyapunov exponent in presence

of noise for EE coupling
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Figure 4.15: Lyapunov exponent in presence

of noise for IE coupling

Nonidentical neurons

We define nonidentical neurons as those for which any of the parameters involved are

nonidentical including input β’s. We expect a system with different parameter values

to have different dynamical behaviors and it becomes difficult to observe complete syn-

chronization in such a system. According to our definition of nonidentical neurons the

IE is nonidentical system, even though all the parameters except the synapse type (α)

is different. Below we present a curve for the IE system with the following parameters

g12 = g21 = 0.3,τ12 = τ21 = 2.0, τR = 0.1, η = 5.0 and β1 = β2 = 0.0. We can clearly

observe in figure(4.16) that rather then taking the system closer to a state of complete

synchronization, noise is taking it away from it. But it is very much possible to observe

CS in time windows even for some nonidentical coupled neurons also. We present one such

47



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5  6

 <
|x

1-
x 2

|>

  Coupling Constant g, (g12=g21=g)

 σ =0.0
 σ =0.3
 σ =0.6
 σ =0.9

Figure 4.16: Effect of noise on IE system with varying coupling strength

simulation where this can be clearly seen in in Fig(4.17). In this simulation we have taken

values of β’s which are little different, β1 = 0.0001 and β2 = 0.0 with other parameters

being g12 = g21 = 0.3,τ12 = τ21 = 2.0, τR = 0.1, η = 5.0 and initial conditions were taken

same. We observe bursts and resynchronizations of the system indicative of the fact that

the transition to complete synchronization sate is not stable.

Figure 4.17: Right:Output difference in absence of noise,Left:Output difference in prsence

of noise(σ = 0.75)
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4.6 Instantaneous phase-frequency plots

We observed [5],[6],[7] that the plots between the instantaneous phase & instantaneous

frequency of the inputs

Ii = βi +
N

∑

j=1

αjgjisji (4.4)

going into each neuron gives information about whether the system would undergo com-

plete synchronization or not. In the cases where complete synchronization occurs we

observe structures as in the phase frequency plots of the Fig((4.20). It will be noted that

the signature of complete synchronization is the almost identical nature of the plots for

the two systems that are in synchrony, be it with or without noise. On the other hand, the

absence of complete synchronization gets reflected in the non-identical phase–frequency

plots for the input received by the neurons as shown in Fig(4.21). This is again true for

both the noiseless as well as noisy cases[5],[6],[7].
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 2800  3000Input of Neuron 1
Input of Neuron 2

Figure 4.18: Time series of inputs to two neurons, showing relaxation oscillations

Figure 4.19: Curves betweeen phase and frequency of the input I
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Figure 4.20: The upper panel of figures is the noise less case in lower panel we have noise

of strength(σ = 0.301).

Figure 4.21: The upper panel of figures is the noise less case in lower panel we have noise

of strength(σ = 0.09).

One striking feature of all these plots is their strange, flame like structures. The flame

shape is reminiscent of canards that are typically associated with systems exhibiting relax-
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ation oscillations or those showing transitions from small amplitude oscillatory motion to

relaxation-oscillations as happens in the Belousov-Zhabotinsky reaction [34]. Though the

flames may not be true canards, the time series for the neuronal inputs do show relaxation

oscillations Fig(4.18) indicating a separation of time scales. There are two cases we are pre-

senting — one in which we observe complete synchronization Fig(4.20). Parameters used

in this EE case are β1 = 0.1,β2 = 0.1,g12 = g21 = 0.3, τ12 = τ21 = 2.0, τR = 0.1, η = 5.0,

and another one in which we haven’t observed CS Fig(4.21,4.18). Parameters used in

this IE case are β1 = 0.0, β2 = 0.0,g12 = g21 = 0.3,τ12 = τ21 = 2.0, τR = 0.1, η = 5.0.

CS was not observed in the case of the IE system even at very strong noise but in the

above figures we see that at very little noise we are getting structures in input’s phase and

instantaneous frequency curves quite similar to each other even though the structures in

noiseless case were very different from each other. This indicates there is some kind of

order coming up in phase. We show in the next section that it is phase synchronization

does happen in this case.

4.7 Noise induced phase synchronization in IE cou-

pling

For this we take probably one of the most pathological case where all the parameters

are different and try to see whether some kind of order is induced in phase. For this

purpose we do a statistical interpertation of phase. The values of the parameters used

are as follows g12 = g21 = 0.3,τ12 = τ21 = 2.0, τR = 0.1, η = 5.0 and β1 = β2 = 0.0

and coupling type is IE. . The phase difference Φ = φ1 − φ2 where φ1 and φ2 are the

phases of neuron 1 and 2 respectively. So, the condition Φ ∈ [−π, π] is automatically

satisfied on taking Hilbert Transform and then taking the phase difference. A peak in

Φ manifests as a preferred phase difference between the systems, if we interpret phase

difference in statistical sense[40],[11]. In the presence of noise, this kind of coherence in

phase difference is termed as phase synchronization. On increasing the strength of noise

the peak is becoming sharper and sharper which means noise is able to induce more and

more order in the phase.
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Figure 4.22: Effect of noise on rate of synchronization

4.8 A simulation of an ensemble of 200 neurons

In the first case we take an ensemble of 200 uncoupled theta neurons. All of them are

receiving the inputs of the same strength i.e β = 0.1.The only difference between them is in

the initial conditions, θi(0) = r1 where r1 is a random number between 0 and 2π. A noise of

strength σ = 0.25 is introduced into the system which results in complete synchronization.

The outputs for this simulation is shown in the Fig(4.23). In the second case we take 200

coupled theta neurons in which 150 neurons are excitatory and 50 are inhibitory neurons.

Each neuron receives the same input βi = 0.1 and there is all to all random coupling with

the coupling strength varying between 0.05 and 0.1 and with different initial conditions.

This simulation is shown in the Fig(4.24). The red colour neurons are the excitatory

ones and the green coloured ones are inhibitory. On introducing Guassian white noise of

strength σ = 5.0 into the system we observe synchronous phenomena emerging between

the excitatory and inhibitory neurons. The interesting thing to note here is that most of

the inhibitory neurons are firing in sync with other inhibitory neurons and also most of

them are synchronized with excitatory neurons. This simulation is quite near to real

ensembles of neurons for two reasons: first because the couplings have random strengths
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Figure 4.23: 200 uncoupled theta neurons, Above: in absence of noise, Below: in presence

of noise σ = 0.25
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and second because these are all type I neurons and mammalian neurons exhibit type I

excitability. This kind of noise induced complete synchronization with random coupling

strengths has never been shown before for type I neurons.

4.9 Further studies and Conclusion

4.9.1 Further Studies

Noise induced order in IE system

We have shown that nearly complete synchronization can be possible even for IE systems

in the presence of noise – an important result which is previously unknown in the litera-

ture. We have also observed noise induced co-operative phenomena such as noise induced

phase synchronization discussed in Section(4.7). Here we display some more curves which

show some kind of noise induced order in IE case for just two neurons. The values of

parameters were the same as used earlier. In Fig(4.25) we see a zig-zag trajectory, which

we get by joining the points in the bifurcation diagram we have shown in the last chapter

for the IE case. But in the next figure(4.26) where we introduced noise of strength σ = 1.0

we observe a smooth trajectory. This phenomanon is of course counter–intuitive as noise

is always equated with disorder but here we observe order emerging on introducing noise.

It is these kind of phenomena which need to be looked into further for correlating them

with the dynamics of real neurons.
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Figure 4.25: In absence of noise

-1 -0.5  0  0.5  1  1.5

β1=β2=0.1

Firing 

 0  0.2  0.4  0.6  0.8  1
 x1 ----> 

 0

 0.2

 0.4

 0.6

 0.8

 1

 x
2-

--
->

  

Figure 4.26: In presence of noise (σ = 1.0)
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Critical slowing down

In section(4.5) we have shown complete synchronization in a system of two coupled EE

theta neurons firing at different initial conditions. There we observed noise induced tran-

sition to synchronization. Noise induced synchronization is mathematically not a well un-

derstood phenomenon. Since the phenomenon has many applications in many disciplines,

therefore it is important to look into the origin of this kind of transition. Synchronization

is thought to be a dynamics of the system rather than a state[2]. We explored [5],[6],[7]

the possibility of the phenomenon of synchronization being effected through some kind

of a bifurcation induced by noise. This kind of study can give us insights into the basic

origin of noise induced synchronization. In Fig(4.27) for the same parameter values as

used in Section (4.5) for showing CS in EE case we plot the ∆t vs time where ∆t is

the difference in time taken by one iteration between the noiseless case and the case in

which noise induces complete synchronization. The colour code represents the difference

between outputs i.e x1−x2 (see Fig(4.27)). As the transition to synchronization starts the

colour changes to black and there we see a broad spike which seems to be representative

of critical slowing down of the system at that point. But to establish this fact beyond all

doubt further studies needed to be done for this system.
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Figure 4.27: Synchronization as phase transition
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4.10 Conclusion

The generic normal form equations which model type I neural excitability support a saddle

node bifurcation on an invariant circle. The theta neuron model is described by such

generic equations. So, it is mathemtically plausible to reduce any physical or biological

model having type I excitability to the theta neuron model by appropriate transformation

of the variables involved. The major advantage of working with the theta neuron model

is that it is governed by single variable allows for automatic phase resetting, and enables

comparatively manageable simulations especially of bigger ensembles of neurons.

One of the possible mechanisms for synchronization in neurons could be due the pres-

ence of noise. Although even in a deterministic system, an appropriate coupling itself can

lead to synchronization in oscillators, a more realistic situation should necessarily include

fluctuations, since noise is part and parcel of all physical and biological systems includ-

ing neurons and must be taken into account. We have studied in this dissertation noise

induced synchronization in theta neurons. We have found that identical neurons firing

at different initial conditions undergo complete synchronization on introducing Gaussian

white noise into the system. Also we have observed that noise can induce variability in

firing patterns. Naturally occurring systems are usually non identical and we have shown

that noise is able to induce order and establish a co-operative phenomena in those cases

also, especially phase synchronization of IE systems which has importance in the way

neurons encode information.

We also carried out a 200 neuron simulation with random all to all couplings with

150 excitatory and 50 inhibitory neurons, we noticed in these simulation emergence of

synchrony even between non-identical oscillators. An unexpected result we find is that

it is possible in the presence of noise to induce nearly complete synchronization in an

ensemble of IE neurons – a system of non-identical oscillators.

Nearly all the numerous results presented in this dissertation are new and have been

shown for the first time (refs.[5],[6],[7]). It is hoped that our work would significantly

further the understanding of physical and biological systems having the generic behaviour

discussed herein.
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Appendix A

Lyapunov Exponents

Before defining Lyapunov exponents we detail the notations and concepts we will be using

in this section. The first among these is a variational equation.

Variational Equation

Let us consider an nth order autonomous system

ẋ = f(x) (A.1)

where x is an n dimensional vector. Let its solution at time t starting with initial condition

x(0) = x0 be represented by Ft(x0). Then Eq(A.1) can be written as

d

dt
Ft(x0) = f(Ft(x0)) (A.2)

Differentiating the above equation with respect to x0 and using the chain rule we obtain

d

dt
Dx0

Ft(x0) = Dxf(Ft(x0))Dx0
Ft(x0) (A.3)

This equation is known as the variational equation of the differential equation. We simplify

the notation by denoting

Xt(x0) = Dx0
Ft(x0) (A.4)

So our variational equation in terms of this matrix will be

Ẋt(x0) = Dx0
Ft(x0)Xt(x0) (A.5)

The above equation is the variational equation which we will be using in our algorithm

for finding the Lyapunov exponent. It is basically a linearization of the vector field f(x)
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along the solution. Also since F0(x0) = x0, hence Dx0
Ft(x0) = I i.e X0(x0) = I. The

importance of variational equation is in the fact that we can find the time evolution of a

perturbation δx0 of x0 by

δx = Xt(x0)δx0 (A.6)

where Xt(x0) comes from the solution of the variational equation.

Definition of Lyapunov exponent

Let k1(t), k2(t), k3(t), ......, kn(t) be the eigen values of the matrix Xt(x0) where x0 is any

initial condition picked from R
n. Then the Lyapunov exponent is defined as

λi = lim
t→∞

1

t
ln |ki(t)| (A.7)

A more practically useful definition for calculating Lyapunov exponents numerically could

be given as follows: Two nearby initial conditions x0 and x′
0 = x0 +δx0 evolve after some

time t to x and x + δx. The time evolution of a perturbation δx of x can be found by

variational equation. The Lyapunov exponent can also be defined as the mean rate of

divergence of two close trajectories. Thus we can write

λ(x0, δx) = lim
t→∞

1

t
ln

‖δx‖

‖δx0‖
(A.8)

where ‖.‖ represents the Euclidean norm.

Numerical calculation of Lyapunov exponent

A direct approach to calculate Lyapunov exponents from definition Eq(A.8) would involve

finding out Xt(x0) by solving the variational equation and then determining its eigen

values using QR decomposition. But it is not workable in many cases in practice and we

present a more sophisticated technique to find the Lyapunov exponent numerically. To

calculate Lyapunov exponent of nth order contnious system Eq(A.1), we first integrate it

to obtain a reference trajectory. Then simultaneously the variational equation Eq(A.5)

is also solved starting with intial conditions defining an arbitrarily oriented frame of

linearly independent n-orthonormal vectors (δx1, δx2, δx3.....δxn) in R. Usually there is a

tendency of these orthnormal vectors when evolving in time: they line up in the direction
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of most rapid growth. To overcome this we need to orthonormalise these vectors at

regular intervals of time. For this purpose we use Gram-Schmidt Orthonormalization

procedure which gives us a new set of vectors (u1,u2,u3, .......,un) where

v1 = δx1

u1 =
δv1

‖v1‖

vi = δxi −

i−1
∑

j=1

〈δxi,uj〉uj (A.9)

ui =
δvi

‖vi‖

where 〈.〉 denotes the inner product. The Gram-Schmidt Orthonormalization procedure

is applied after a time interval ∆t and the procedure as a whole is repeated N number of

times the Lyapunov exponents are then given as

λi =
1

N∆t

N
∑

k=1

ln ‖v
(k)
i ‖ (A.10)

Algorithm for calculating Lyapunov exponent

Below we give an algorithm to calculate the Lyapunov exponent

Step 1 :- Set the initial conditions

u = u[ ][ ] = I and x = x0

Step 2 :-Set sum[ ] = 0 and a counter i = 1

Step 3 :- Solve the Eq(A.1) with time step ∆t to obatin F∆t(x0) and simultaneously

solve the variational equation with the same time step ∆t. Solution of variational equation

will give us X∆t(x0). Use it to solve δx = X∆t(x0)u

Step 4 :-Perform the Gram-Schmidt Orthonormalization on δx = δx[ ][i] as discussed

above and obtain v = v[ ][i]

Step 5 Calculate sum[i] = sum[i] + ln ‖v[ ][i]‖ then λ[i] = sum[i]/N∆t

Step 6 Increment i i.e i = i + 1. If i > imax then Lyapunov exponets have not

converged. Go to Step 8

Step 7 Go to step 2 if required accuracy hasn’t been achieved.

Step 8 End

Most of the analysis and algorithm presented above is adapted from the book by Chua

and Parker[41], a useful discussion is also given in [42] and [12]. A primitive form of this
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algorithm in the form of a Fortran code is given in [43]. Other important references for

the numerical calculation of Lyapunov exponent are [44] and [45].

Table A.1: Values of Lyapunov exponents for different attractors/motion

Steady State Flow Lypapunov Exponents

Equilibrium point point 0 > λ1 ≥ .... ≥ λn

Periodic Circle λ1 = 0 and 0 > λ2 ≥ .... ≥ λn

Two Periodic(Quasi-Periodic) torus λ1 = λ2 = 0 and 0 > λ3 ≥ .... ≥ λn

K-Periodic(Quasi-Periodic) K-torus λ1 = λ2 = λ3 = 0 and 0 > λ4 ≥ .... ≥ λn

Chaotic Cantor-like λ1 > 0 and
∑

λi < 0
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Appendix B

Hilbert Transform

It is possible to obtain instantaneous attributes of a signal by using the technique of

Hilbert Transform. Below we present a brief review of the basic concepts involved. Basic

references for this is [46]. Also a useful note is also given in the appendix of ref.[2].

Instantaneous Phase and Frequency

We define instantaneous phase and frequency using the definition given by van der Pol.

Consider a simple harmonic motion by the expression

s(t) = A cos(2πft + θ) (B.1)

Where A is the amplitude,f is the frequency and θ is the phase constant. Then the

intantaneous phase is defined as

φ(t) = 2πft + θ(t) (B.2)

and the instantaneous frequency by

fi(t) =
1

2π

dφ(t)

dt
(B.3)

Analytical signal and Hilbert Transform

D.Gabor(1946) proposed a method of generating a complex signal from a real one. One

can construct an analytical signal z(t) from a given signal s(t). It is defined as

z(t) = s(t) + jH[s(t)] = A(t)ejφ(t) (B.4)
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Where H[s(t)] represents the Hilbert Transform (HT) of s(t) and is given by

H[s(t)] = π−1P.V

∫ ∞

∞

s(τ)

t − τ
dτ (B.5)

Where P.V denotes that the integral is taken in the sense of Cauchy principal value.

Numerically, in time domain HT can be done via covolution of the time series data with

precomputed characteristic of the filter(Hilbert Transform). The software package MAT-

LAB provides a function hilbert() which can perform HT. Then instantaneous attributes

can be calculated as follows.

Instantaneous phase :-

φ(t) = tan−1

(

H[s(t)]

s(t)

)

(B.6)

Instantaneous amplitude :-

A(t) =

√

s2(t) + H[s(t)]2 (B.7)

Instantaneous Frequency :-

fi(t) =
dφ

dt
=

φ(t2) − φ(t1)

t2 − t1
(B.8)
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Appendix C

Stochastic RK-4

The major reference for this appendix are Rüemelin[47],Hansen and Penland[48] and the

book by Kloeden and Platen[49].The reference for deterministic RK-4 (Runge-Kuta 4th

order) can be found in [50].

Stochastic Differential Equation (SDE)

A SDE has the following form

dx = F(x, t)dt + G(x, t) ◦ dW (C.1)

Where x is stochastic variable, F(x, t) is the vector function of deterministic part and

G(x, t) is the matrix containing the stochastic part. W represents a Wiener process. The

symbol ◦ represents that integration is carried out in a stochastic sense using Stratonovich

Calculus. Eq(C.1) can also be written as

dx

dt
= F + G ◦

dW

dt
(C.2)

To solve the above equation numerically we need to discretize it. We know that dWi has

statistics of N(0, dt), so if we write the discretized form of the Eq(C.2) as

dx

dt
= F + G

z

∆
(C.3)

then z

∆
will be given by random number independently drawn from N(0, 1

∆
). That means

the variance σ2 ≡ 1
∆

, and therefore the standard deviation σ = 1√
∆

. Thus on normalizing

N(0, 1) by 1√
∆

we can get the distribution similar to z

∆
. The stochastic RK-4 scheme is
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as follows. Defining and updating the equation as

x(t + ∆) = x +
m

∑

j=0

pjKj∆ +
m

∑

j=0

qjMjz (C.4)

where

K0 = F(x(t), t + ν0∆) (C.5)

M0 = G(x(t), t + ν0∆) (C.6)

x(1) = x(t) + β1,0K0∆ + γ1,0M0z (C.7)

K1 = F(x(1)(t), t + ν1∆) (C.8)

M1 = G(x(1)(t), t + ν1∆) (C.9)

x(2) = x(t) + (β2,0K0 + β2,1K1)∆ + (γ2,0M0 + γ2,1M0)z (C.10)

.

.

.

x(m) = x(t) +
m−1
∑

k=0

βm,kKk∆ +
m−1
∑

k=0

γm,kMkz (C.11)

Km = F(x(m)(t), t + ν0∆) (C.12)

Mm = G(x(m)(t), t + ν0∆) (C.13)

The conditions on above coefficients are as for Stratonovich calculus and are as fol-

lows
∑m

j=0 pj = 1,
∑m

j=0 qj = 1 and λ =
∑n

j=1 qj

∑j−1
k=0 γj,k = 1/2 . The values of other

parameters are: p0 = p3 = q0 = q3 = 1/6,p1 = p2 = q1 = q2 = 1/3,m = 3, ν0 = 0, ν1 =

ν2 = 1/2, ν3 = 1,β1,0 = β2,1 = γ1,0 = γ2,1 = 1/2,β2,0 = β3,0 = β3,1 = γ2,0 = γ3,0 = γ3,1 =

0,β3,2 = γ3,2 = 1. It is very much clear from the step one that this algorithm proceedes by

drawing z from N(0,∆). The advantage of working with this method is that it is many

time less expensive than tranditional methods like Euler’s method. It is compact, so easy

to code. We have chosen this method because of its speed as we were required to solve

400 coupled equations for the 200 neuron simulations. Gaussian white noise is generated

using Box-Muller method[51].
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